Prism adaptation during walking generalizes to reaching and requires the cerebellum.

نویسندگان

  • Susanne M Morton
  • Amy J Bastian
چکیده

Adaptation of arm movements to laterally displacing prism glasses is usually highly specific to body part and movement type and is known to require the cerebellum. Here, we show that prism adaptation of walking trajectory generalizes to reaching (a different behavior involving a different body part) and that this adaptation requires the cerebellum. In experiment 1, healthy control subjects adapted to prisms during either reaching or walking and were tested for generalization to the other movement type. We recorded lateral deviations in finger endpoint position and walking direction to measure negative aftereffects and generalization. Results showed that generalization of prism adaptation is asymmetric: walking generalizes extensively to reaching, but reaching does not generalize to walking. In experiment 2, we compared the performance of cerebellar subjects versus healthy controls during the prism walking adaptation. We measured rates of adaptation, aftereffects, and generalization. Cerebellar subjects had reduced adaptation magnitudes, slowed adaptation rates, decreased negative aftereffects, and poor generalization. Based on these experiments, we propose that prism adaptation during whole body movements through space invokes a more general system for visuomotor remapping, involving recalibration of higher-order, effector-independent brain regions. In contrast, prism adaptation during isolated movements of the limbs is probably recalibrated by effector-specific mechanisms. The cerebellum is an essential component in the network for both types of prism adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prism adaptation to rightward optical deviation improves postural imbalance in left-hemiparetic patients

Left-hemiparetic patients show predominant postural imbalance as compared to right-hemiparetic patients. The right hemisphere is crucial for generating internal maps used for perceptual and premotor processing of spatial information. Predominant postural imbalance with right-brain damage could thus result from a distortion of an internal postural map. Well-known manifestations of distorted inte...

متن کامل

Changes in task parameters during walking prism adaptation influence the subsequent generalization pattern.

An understanding of the transfer (or generalization) of motor adaptations between legs and across tasks during walking has remained elusive due to limited research and mixed results. Here, we asked whether stepping sequences or task constraints introduced during walking prism-adaptation tasks influence generalization patterns. Forty subjects adapted to prism glasses in precision-walking or obst...

متن کامل

Changes in task parameters during walking prism adaptation influence the 1 subsequent generalization pattern

42 An understanding of the transfer (or generalization) of motor adaptations between legs and 43 across tasks during walking has remained elusive due to limited research and mixed results. Here, 44 we asked whether stepping sequences or task constraints introduced during walking prism 45 adaptation tasks influence generalization patterns. Forty subjects adapted to prism glasses in 46 precision ...

متن کامل

Quantitative Evaluation of Human Cerebellum-Dependent Motor Learning through Prism Adaptation of Hand-Reaching Movement

The cerebellum plays important roles in motor coordination and learning. However, motor learning has not been quantitatively evaluated clinically. It thus remains unclear how motor learning is influenced by cerebellar diseases or aging, and is related with incoordination. Here, we present a new application for testing human cerebellum-dependent motor learning using prism adaptation. In our para...

متن کامل

Dynamic changes in brain activity during prism adaptation.

Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing er...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 4  شماره 

صفحات  -

تاریخ انتشار 2004